

1

Accelerated Image Stitching Via Parallel

Computing for UAV Applications

Rick Ramirez1 John Korah2, and Subodh Bhandari3
,

California State Polytechnic University, Pomona, CA 91768, USA

Tu Nguyen4 Yuqi Chen5
University of California, Irvine, CA 92697, USA

Du D. Le6
Mt. San Antonio College, CA 91789, USA

This paper presents an accelerated image fusion algorithm for Unmanned Aerial Vehicle

(UAV) applications which is based on image stitching using invariant features. By utilizing

parallel computing techniques for distributed and shared memory architectures, there is an

improvement in both the runtime of the feature-based image stitching procedure, and an

improvement in the quality of the results when compared to sequential processing. The images

used to generate the panorama were obtained from a UAV at a frame rate of 𝟑𝟎𝑯𝒛 and a

resolution of 𝟑𝟖𝟒𝟎 𝐱 𝟐𝟏𝟔𝟎. As the UAV traverses across the landscape, a video frame buffer

is collected and sent to a multi-core Central Processing Unit (CPU) where individual CPU

cores perform image fusion in parallel. The developed algorithm can be applied to any multi-

core CPU (or cluster of multi-core CPU architectures) with support for Graphics Processing

Unit (GPU) accelerations. The procedure was tested on various hardware platforms including

edge computing devices, ground stations, and high-performance computing environments.

The results show that as the number of available CPU cores is increased, there is a decrease

in the runtime by as much as 7x under the distributed memory design. There is also a decrease

in runtime during the feature detection stage of the fusion process under the shared memory

design by a factor of 10x. Finally, by incorporating GPU acceleration at various stages of the

stitching procedure, there is a decrease in the runtime by another factor of 2x. Furthermore,

as the number of threads utilized in the shared memory design is increased, there is a

significant improvement in the quality of the panorama.

I. Nomenclature

𝑇𝑠 = sequential processing runtime

𝑇𝑝 = parallel processing runtime

S = speedup

C = cost

E = efficiency

N = number of processors

q = number of threads

1 Graduate Student, Computer Science Department.
2 Assistant Professor, Department of Computer Science.
3 Professor, Aerospace Engineering Department, and AIAA Associate Fellow.
4 Undergraduate Student, Computer Science Department.
5 Undergraduate Student, Informatics Department.
6 Undergraduate Student, Mathematics and Computer Science Department.

2

II. Introduction

Unmanned Aerial vehicles (UAV) are widely used in many applications [1] that require remote sensing. In these

applications, a UAV can be equipped with a camera to process images and generate a map, either onboard or remotely

on a ground station. Real-time image processing is crucial in numerous applications, particularly during natural

disasters [2] where rapid changes in the landscape, collapsing buildings, and outdated maps necessitate immediate and

accurate updates. The process of feature-based map generation involves combining two or more images together and

is referred to as 'image stitching' [3]. An example can be seen in Fig. 1 where 30 4k images are combined to form a

cohesive panorama.

Fig. 1 Panorama generated from UAV video frames.

The image stitching workflow involves analyzing each image for characteristic features that are to be compared

with each other. Since the number of features in a UAV obtained image is usually on the order of thousands, the

feature detection and matching procedures between two images are computationally expensive tasks that can be very

time-consuming. In time-critical applications such as search-and-rescue, it is important to process data within strict

time constraints, but as more images are incorporated into the panorama, the runtime increases significantly due to

redundant computations, and the quality of the results begins to degrade.

The workflow presented in the next section offers a unique opportunity to exploit different levels of parallelism.

For example, since the task of fusing a collection of UAV acquired images must be performed in a particular order, a

distributed memory approach to image stitching can be utilized where the results of each sub-task are communicated

among separate processes. On the other hand, the internal operations of the stitching procedure can be accelerated

with a shared memory approach to image fusion because the individual stages of the stitching workflow can be

performed simultaneously. By combining different levels of parallelism, the algorithms developed here can make use

of all the available resources in a multi-core Central Processing Units (CPU).

Methods of distributing work across multiple processors via a distributed memory parallel programming tool called

Message Passing Interface (MPI) [4,5] are investigated so as to decrease computation time and limit the number of

times the data are transmitted between compute nodes. Accelerations involving shared memory architecture-based

tools such as Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) are also explored.

MPI and OpenMP were chosen because of their portability and standardized functionality while CUDA was chosen

due to its maturity as an application programming interface (API). It is shown that by employing various levels of

parallelism, there is a corresponding decrease in the time it takes to fuse images as well as an enhancement in the

quality of the panorama that is produced, regardless of the computing hardware that is used. Since each UAV and

ground station is configured with different hardware components, the framework developed here is designed to be

modular and adaptive.

 While there have been many fusion algorithms that aim to accelerate the procedure for real-time applications, most

of the literature fuse only a small number of images (between 2 and 10 on average) [6–11] or use images of low

resolution (less than 3840 x 2160) [7,8,10,11] in their metrics. Many of the procedures developed in previous work

also require specific hardware requirements such as a GPU [6,8–10] or even specialized hardware in the form of an

FPGA [7]. In this work, 64 4k images are fused using an assortment of different hardware configurations. Each of the

acceleration techniques outlined in Section IV can be utilized in tandem with each other, or as a standalone routine.

This provides a great amount of flexibility in the types of hardware that the methodology can accommodate and offers

means of choosing between processing onboard the UAV or transferring the video feed for remote processing

(provided that the bandwidth of the network can support it).

Fig. 2 shows the concept of operation where a UAV scans a landscape with a downward facing camera and the

video data are to be transmitted to any single-core CPU, multi-core CPU, or cluster of multi-core CPUs for the fusion

3

process to occur. From Fig. 2, “Black Box” refers to the fact that the image fusion process can take place onboard, on

a ground control station, or on a high-performance computing cluster. In many applications involving UAV-generated

maps, Global Positioning System (GPS) data are utilized [12] to orient the images relative to each other.

Georeferencing an image provides a stable and reliable way to organize incoming images into a unified coordinate

system because the procedure can by bypassing the feature detection and matching stages that are required to generate

the transformation matrix that warps the images into a common space. However, if that system were to fail, either by

GPS spoofing [13], jamming [14] or a hardware failure, the feature-based approach will sustain map generation, and

the algorithms developed in this work will help to ensure the speed and integrity of the results.

Fig. 2 Concept of operation.

Part of the challenge in feature-based image fusion algorithms [15] is ensuring that the results are not corrupted.

This can happen when local features between two images are incorrectly matched, which will cause a miscalculation

of the mapping between the coordinates frames of the two images. The method by which the images are captured also

has a significant impact on the fusion procedure. Depending on the orientation of the camera, the coordinate system

used to transform the incoming images into a unified space can be adjusted according to the way in which the camera

is mounted to the aircraft. This work utilizes a downward-facing camera and a planar coordinate system. However, if

the camera were mounted to the UAV via a gimbal, a different coordinate system would be more suitable. For example,

if the camera can pan in the x and y-directions, a cylindrical system would be more suitable whereas a camera that

can also move in the z-direction would benefit from spherical coordinates. By tracking features between sequential

frames, it is possible to detect changes in the orientation of the camera and adjust the parameters of the algorithm

accordingly to produce the best possible results.

Another challenge faced in this work is that the original implementation for image stitching by Ref. [3] assumed

that the scene to be mapped is approximately an infinite distance from the camera lens such that there is no parallax

and that the homography among all the images is calculated only once. The low altitude of the aircraft and the delayed

arrival of frames directly violate these assumptions; however, it was found that in most conditions, the results remain

intact. Once the panorama has been generated, as shown in Fig. 2, it can then be transmitted to a ground station for

remote viewing.

The above challenges are addressed in the following sections which are organized as follows; Section III expands

on the methodology of image stitching, Section IV explores an approach to performing image stitching in parallel for

4

both shared and distributed memory architectures, Section V shows the results of the developed methodology, and

Section VI closes with concluding thoughts and plans for future work.

III. Image Stitching Methodology

The image stitching workflow developed in Ref. [3] consists of four general stages. It begins by performing Scale

Invariant Feature Transform (SIFT) detection to obtain unique features in each image [7]. The features are then

compared and matched to the features in every other image. From these matches, a projective transformation [12,16]

can be approximated, the solution of which is optimized to best agree with the features that were matched in the

images. By holding one image as a frame of reference, every other image can be warped to the same coordinate system,

thus producing a cohesive panorama. The final stage of the stitching procedure is to blend any harsh seams that may

appear in the composite image. Figure 3 outlines the various stages of the image stitching workflow, each of which is

expanded on below.

Fig. 3 Image stitching workflow.

1) Feature Detection

There are three common feature detectors available in the implementation.

1) Scale-invariant Feature Transform (SIFT): The original conception by Ref. [3] employed SIFT, which consists

of detecting scale-space extrema and keypoint localization followed by orientation assignment and a 128-

dimensional keypoint and descriptor construction. Once the keypoints and their descriptors are computed,

they can be compared across images.

2) Speeded-Up Robust Features (SURF): The original implementation of the work in this paper utilized SURF

for its enhanced speed compared to SIFT. It also has support for CUDA enhancement natively in OpenCV.

The procedure begins by detecting a scale-space Hessian matrix followed by keypoint localization, orientation

assignment and a 64-dimensional descriptor assignment. Given that the descriptors between SURF are half

the size of the SIFT descriptors, there is an inherent speed boost when SURF is employed. This option also

utilizes box filters and Haar wavelets, making it more suitable for real-time applications, however, the

algorithm is currently patented and not suitable for commercial use.

3) Oriented FAST and Rotated BRIEF (ORB): ORB is a fast and efficient feature detection and description

algorithm which combines two techniques: FAST for feature detection and BRIEF for feature description,

with enhancements for rotation invariance and robustness. The procedure begins by utilizing FAST to perform

keypoint detection followed by keypoint orientation assignment. Descriptors can then be extracted using

BRIEF by sampling pairs of pixels in a circular region around the keypoint and generating a binary descriptor.

5

Since ORB is opensource and designed for high efficiency, while maintaining rotational invariance in real-

time applications with limited resources, this work has opted for ORB in most of the results in Section V.

2) Feature Matching

 Pairwise matching of the descriptors between any two images can be performed in a number of ways. The

developed implementation offers three options:

1) Best of two nearest matching: Finds the two best matches for each feature and leaves the best one only if

the ratio between descriptor distances is greater than a predefined confidence threshold.

2) Affine best of two nearest matching: Similar to best of two nearest matching with the expectation of an

affine transformation between images.

3) Best of two nearest range matching: Similar to the two methods above with the restriction of sampling

within a restricted location in the image. For more complex models, a homography matrix should be used;

especially when the camera viewpoint changes, and the scene appears distorted.

3) Transformation Estimation

There are two options available to describe a projective transformation that relates the coordinates of points in one

image to the coordinates of points in another image, assuming the scene is planar, or the transformation can be modeled

as such. For simple transformations that do not exhibit perspective effects, a more restrictive affine transformation

can be utilized.

4) Camera Estimation and Adjustment

As the UAV traverses across the landscape, the orientation of the camera is likely to change. This can be estimated

by taking the features and pairwise matches between all images and estimating the rotations of all cameras with the

goal of improving the accuracy of both the camera's internal parameters (such as focal length, lens distortion, and

position) and the 3D scene geometry (such as the locations of feature points in the world). The procedure outlined by

Ref. [3] assumes that the scene that is to be formed into a panorama is approximately an infinite distance from the

camera. This is not the case for UAV acquired images with a downward facing camera. Nevertheless, the procedure

is fairly forgiving in this regard.

5) Wave Correction

Since the homography and bundle adjustments are estimated and recalculated for each incoming video frame, there

is often a geometrical misalignment that might appear along the stitching seams which can be addressed with a wave

correction by globally adjusting the image grid to reduce these distortions. It essentially smooths the geometry of the

image in a way that makes the seam artifacts between images less noticeable.

6) Image Warping

The implementation offers 16 warping schemes, 3 of which can be GPU accelerated. The 3 most common use

cases utilized in this work are:

1) Plane Warping: A perspective warping is ideal for general-purpose image stitching with scenes that have

perspective (e.g., architecture, detailed wide-angle shots). However, this method can introduce perspective

distortion, especially on wide scenes or images with depth variation.

2) Cylindrical Warping: This option is ideal for stitching horizontal panoramas where the camera rotates around

the vertical axis (e.g., 360° panoramas). Vertical distortion is minimized, but horizontal stretching may occur

near the edges which tends to get worse as more images are added to the panorama.

3) Spherical Warping: This option is ideal for spherical panoramas or 360-degree photos, where the camera

rotates around its center from a fixed viewpoint with no depth changes. This is rarely the case for UAV

acquired images.

All of the above image warping options detailed here are offered with GPU support.

7) Exposure Compensation

When multiple images are taken from different angles or under different lighting conditions, there are likely

varying brightness levels. This can cause harsh seams, especially in images with smooth gradients. The exposure of

each image can be adjusted so that all images appear uniformly lit.

8) Seam Finding

A seam is the boundary line where two images are combined into a larger image. The goal of seam finding is to

identify the best seam where the blending between images will be least noticeable and visually pleasing. This is done

by representing each image as a graph where each pixel is a node. The edges between nodes represent the cost of

transitioning from one pixel to another with the goal of minimizing the cost path between images. In most cases of

UAV acquired images, there will still be a jagged seam that can be cleaned further in the blending stage of the stitching

process.

6

9) Image Composition and Blending

During the composition stage, the images are warped via the transformation matrix that was calculated previously.

The exposure compensator and seam finder can be used to adjust the images and minimize artifacts. Any harsh

discrepancies between the images can further be cleaned with a number of blending techniques to obtain a smoother

gradient across the panorama. The original concept of the stitching procedure assumed that this process would occur

only once for a given set of images. However, since a real-time video feed provides images to be processed as a

function of time, the incoming frames need to be incorporated sequentially. As a consequence, there is often a

blurriness that propagates across the panorama as more images are incorporated into the result. To address this, the

distributed memory approach to image stitching can be used to minimize overprocessing by a factor of 𝐿𝑜𝑔(𝑁) where

N is the number of available processing cores.

By exploiting the asynchronous nature of fusing a collection of images, the entire stitching workflow can be

accelerated by distributing calculations across multiple compute nodes as outlined in the distributed memory design

in Section IV. Under this approach the results of each intermediate task is communicated between compute nodes and

the computations are evenly distributed when the number of images to be processed is equal to half of the number of

CPU cores available, as shown in Eq. 1

𝑁 =
𝐼

2
 (1)

where I is the number of images and N is the number of processes. The individual stages of the workflow can be

further accelerated by utilizing finer grain levels of parallelism since each compute node utilizes a shared memory

workspace. For example, the feature detection stage of the stitching workflow is considered to be “embarrassingly

parallel” because the problem of detecting feature points can be split into individual tasks with no requirement of

communicating between tasks. Similarly the workload of the feature matching stage is perfectly parallel since each

feature point can be simultaneously compared to every other feature point between two images.

The various stages of the workflow in Fig. 3 are color coded to reflect the type of accelerations that have been

explored in this work. From Fig. 3, green labels indicate that the particular stage can be performed with GPU support,

while the blue label indicates the option for OpenMP threading. For example, the first stage can be accelerated by the

shared memory design outlined Section IV, where each image is divided into sub-sections to be processed by

individual threads, or accelerated with a GPU if that hardware is available. By offering different levels of parallelism,

workflow accelerations can be adapted to increase performance in any computing environment.

With the details of the image stitching workflow outlined and some insight into the interdependency between

various tasks, the approach to choreographing image stitching among a set or processors can now be detailed. The

next section expands on the motivation for performing image stitching in parallel and presents algorithm designs for

both shared and distributed memory considerations.

IV. Parallel Processing Designs for Image Stitching

The motivation for this work comes from the fact that as more images are incorporated into the panorama, there is

an increase in the computation time for a single processor. A purely feature-based approach to image fusion requires

that each new image be compared to every other image in the set because it is not guaranteed that the new incoming

image belongs to a particular region of the partly generated map. For example, as images are fused together, the camera

can abruptly change its orientation, which will cause a disjoint in the panorama - meaning the details in the new image

will have no overlap with the previous one. Obviously, the interior of the composite image must be continuous for a

feature-based approach to image fusion to work, however, since it is not guaranteed that incoming images belong to

a particular location in the map, every feature detected in a new image should be compared to all previously calculated

feature points. The accelerated algorithms described below do not consider this kind of situation, however, it does still

compare all new incoming features with all previously generated ones. It is also assumed that each image collected

from the video feed belongs in the order that it is received in relation to the partly generated map. This is critical for

the distributed memory design, but not required for the shared memory design or GPU accelerations.

As the images are fused together, the composite image will increase in size with each iteration, which requires

more and more pixels to be analyzed against each new incoming frame. As a result, the time it takes to fuse each new

image increases as shown in Table 1, which benchmarks the fusion time for 10 images on a single processor. As more

images are added to the resulting panorama, the runtime increases without bound.

7

Table 1 Sequential Processing Runtime For Image Stitching Algorithm.

Another issue that motivates this work is the quality of the results. As mentioned, when two images are fused

together, there is likely going to be a harsh seam that can be removed with blending techniques. If the images are to

be fused as a single batch, this does not present an issue. But for images obtained from UAV video data, the blending

stage begins to degrade the resulting panorama as more images are incorporated into the result. The left image in Fig.

4 shows an example of this, where the images are fused with a single processor, starting from the left and progressing

to the right. As each new image is added to the right end of the composite, the portions to the left end begin to be

overprocessed, resulting in a blur that begins to propagate across the scene. The right image in Fig. 4 shows the

improved results after applying the distributed memory acceleration techniques.

Fig. 4 Serial processing results (left) versus Parallel processing results (right).

To address both issues described above, a tree-based algorithm has been developed which utilizes all available

CPU cores that a given hardware might have available. This effectively reduces the computational complexity of the

fusion process as well as enhances the quality of the blending stage of the fusion algorithm. Furthermore, by

incorporating a shared memory design of the original stitching algorithm developed in Ref. [3] the runtime can be

further decreased.

It should be noted that fusing images in parallel does not guarantee quality results. In general, the more processor

cores involved in the calculation, the less reliable the results can be [4]. This is indeed the case for this work. Processing

subsections of the map separately can cause miscalculations in the global homography. But under the shared memory

architecture approach to feature detection, there is an improvement in the quality of the resulting scene. An example

of this behavior is expanded on in Section V B where a single CPU core is used to fuse a collection of 64 sequential

video frames.

8

A. Distributed Memory Design

Under the distributed memory design, each process utilizes its own memory space and executes independently

from other processes. This allows each node (processor core, or cluster of processor cores) to work on a subsection of

the larger composite image asynchronously. To communicate with each other, each node is assigned a label or ’rank’

which is used to send and receive information to/from other nodes. This work employs a distributed memory

framework called Message Passing Interface (MPI) which is a portable message-passing standard designed to function

on parallel computing architectures. It should be noted that the while the terms node, process, and processor are used

interchangeably, the algorithm does support nodes that consist of multiple processor cores.

The procedure begins by collecting images from video data taken from a UAV. The images are then divided evenly

among the group of nodes. Each node will then use the stitching algorithm to fuse its initial images. Once that is

completed, depending on the rank of the node, it will either transmit its result to an adjacent node, or receive a result

from an adjacent node. The senders and receivers alternate for each round of the computation and at each round, half

of the processors become idle. In the last stage of the algorithm, the final two ranks send and receive their result for

the final stitching to occur on a single node. Figure 5 shows an example of the distributed memory design for a set of

16 images and 8 processor cores. By exploiting the distributed memory architecture of the CPU, the throughput of the

traditional feature-based image fusion algorithm can be increased. Although the parallel algorithm is designed for the

number of cores N, where 𝑁 = 2𝑘 , 𝑘 > 1 and the number of images 𝐼 = 2 × 𝑁, it will also adjust itself to other values

of 𝐼 and 𝑁 by an initial sequential stage of stitching images. Once the initial stage is completed, the number of parallel

image stitching procedure invocations reduces from 𝒪(𝐼) under sequential processing to 𝒪(𝑙𝑜𝑔(𝑁)) under the

distributed memory design. This approach also decreases the amount of overprocessing for each video frame to

𝒪(𝑙𝑜𝑔(𝑁)), which produces clearer results as shown in Fig. 4.

Fig. 5 Tree-based image fusion algorithm.

9

Tree Based Algorithm

 Input: 𝑰𝒎𝒂𝒈𝒆𝒔 𝑨(𝒎 × 𝒏), 𝑩(𝒎 × 𝒏), 𝑺𝒆𝒕 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔 𝑸 = {𝑸𝟎, 𝑸𝟏, … , 𝑸𝑵−𝟏}

 Output: 𝑫(𝑢× 𝒗)

1 Function: 𝑻𝒓𝒆𝒆_𝑺𝒕𝒊𝒕𝒄𝒉_𝑨𝒍𝒈(𝑨, 𝑩, 𝑸)

2 Stride = 1

3 for 𝒊 = 𝟎 𝒕𝒐 𝒍𝒐𝒈(𝑵) do

4 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒂𝒄𝒕𝒊𝒗𝒆_𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔 = {}

5 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒔𝒆𝒏𝒅𝒆𝒓𝒔 = {}

6 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓𝒔 = {}

7 for 𝒌 = 𝟎 𝒕𝒐 𝑵 − 𝟏 do

8 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒂𝒄𝒕𝒊𝒗𝒆_𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔+= {𝒌}

9 for 𝒌 = 𝟎 𝒕𝒐 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒂𝒄𝒕𝒊𝒗𝒆_𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔. 𝒍𝒆𝒏𝒈𝒕𝒉 − 𝟏 do

10 if 𝒌 % 𝟐 = = 𝟎 then

11 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓𝒔 += 𝒌

12 else

13 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒔𝒆𝒏𝒅𝒆𝒓𝒔 += 𝒌

14 if 𝑸(𝒓𝒂𝒏𝒌) 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒔𝒆𝒏𝒅𝒆𝒓𝒔 then

15 𝑴𝑷𝑰_𝑺𝑬𝑵𝑫 𝒕𝒐 𝑸(𝒓𝒂𝒏𝒌 − 𝟐(𝒔𝒕𝒓𝒊𝒅𝒆−𝟏))

16 else if 𝑸(𝒓𝒂𝒏𝒌) 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝒍𝒊𝒔𝒕_𝒐𝒇_𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓𝒔 then

17 𝑴𝑷𝑰_𝑹𝑬𝑪𝑽 𝒇𝒓𝒐𝒎 𝑸(𝒓𝒂𝒏𝒌 + 𝟐(𝒔𝒕𝒓𝒊𝒅𝒆−𝟏))

18 𝑰𝑴𝑨𝑮𝑬_𝑺𝑻𝑰𝑻𝑪𝑯

19 stride ++

20 return 𝑫

B. Shared Memory Designs

Every stage of the feature-based image fusion algorithm offers an opportunity to accelerate the process with a finer

grain level of parallelism. Because Message Passing Interface does not explicitly leverage the strengths of shared

memory, the internal components of the stitching procedure cannot easily be parallelized with the distributed memory

design. Therefore, a shared memory design has been utilized for the feature detection stage of the image stitching

procedure, allowing it to run in tandem with the distributed memory algorithm outlined above. Figure 6 shows that

under this approach, when a node receives two images, they can be partitioned into regions that individual threads can

work on simultaneously. In this case, 8 threads are used to process two 4k images, effectively reducing the number of

pixels that a single thread would need to consider by one-quarter.

Fig. 6 A single node processing two 4k images with multi-threading.

10

The number of threads that a system can run in parallel is not guaranteed. Most systems today offer two threads

per CPU core. Figure 7 shows the general case of the shared memory design. In this case, the images are partitioned

vertically. This decision was made to simplify the algorithm design, but the partitioning method in Fig. 6 is also

suitable. By leveraging the “embarrassingly parallelizable” nature of the feature detection stage of the image

stitching workflow [3], the procedure can be broken into smaller sub-problems to decrease the computational

complexity from 𝒪(𝑚𝑛) [17] for the sequential algorithm to 𝒪 (𝑚
𝑛

𝑞
+

total_features

𝑞
) for the shared memory design,

where 𝑚 and 𝑛 are the dimensions of the image, 𝑞 is the number of threads and total_features is defined

beforehand by the user.

Fig. 7 Parallel feature detection over an m x n (in pixels) image performed by q threads, where 𝒒𝒊 corresponds

to the ith thread and N is the number of processor cores.

To ensure portability, Open Multi-Processing (OpenMP) was selected for the implementation of the shared

memory design since it supports shared-memory multiprocessing programming in C, C++, and Fortran, on multiple

platforms, instruction-set architectures and operating systems. This approach offers a scalable platform that can be

built as a hybrid model alongside MPI.

The details of the shared memory design can be seen in the algorithm below. The procedure begins by partitioning

each incoming image into a number of smaller regions equal to half of the number of threads available on a particular

compute node. Once the features are detected by each thread, the x-position of the keypoints are to be adjusted to

reflect the location of detection with respect to the thread that detected it. Note that if the partitioning system shown

in Fig. 6 were used, the y-positions would also need to be corrected. Once all keypoints have been processed, they are

concatenated into a final vector that can then be used in the feature matching stage of the workflow. Figure 8, shows

an example where each thread is color-coded and assigned a specific region of the image to perform feature detection

based on the individual thread-ID.

Fig. 8 Feature points detected via individual threads.

11

Parallel Feature Detection

 Input: 𝐼𝑚𝑎𝑔𝑒𝑠 𝐴(𝑚 × 𝑛), 𝐵(𝑚 × 𝑛), 𝑆𝑒𝑡 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑞 = {𝑞0, 𝑞1, … , 𝑞𝑖}

 Output: 𝐷(𝑢 × 𝑣)

1 Function 𝐼𝑀𝐺_𝑆𝑇𝐼𝑇𝐶𝐻_𝑃𝐴𝑅𝐴𝐿𝐿𝐸𝐿_𝐹𝐸𝐴𝑇𝑈𝑅𝐸_𝐷𝐸𝑇𝐸𝐶𝑇(𝐴, 𝐵, 𝑞)

2 for 0 to 𝑛𝑢𝑚_𝑖𝑚𝑎𝑔𝑒𝑠 do

3 for 𝑒𝑎𝑐ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 𝑞𝑖 do

4 𝑡𝑖𝑑 = 𝑜𝑚𝑝_𝑔𝑒𝑡_𝑡ℎ𝑟𝑒𝑎𝑑_𝑛𝑢𝑚()

5 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑙 = 𝑡𝑖𝑑 ∗ (𝑓𝑢𝑙𝑙_𝑖𝑚𝑔. 𝑐𝑜𝑙𝑠 / 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

6 𝑒𝑛𝑑_𝑐𝑜𝑙 = (𝑡𝑖𝑑 + 1) ∗ (𝑓𝑢𝑙𝑙𝑖𝑚𝑔 . 𝑐𝑜𝑙𝑠 / 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

7 𝑟𝑜𝑖(𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑙, 0, 𝑒𝑛𝑑_𝑐𝑜𝑙 − 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑙, 𝑓𝑢𝑙_𝑖𝑚𝑔. 𝑟𝑜𝑤𝑠)

8 for 0 to 𝑟𝑜𝑖 do

9 𝐹𝐸𝐴𝑇𝑈𝑅𝐸_𝐷𝐸𝑇𝐸𝐶𝑇𝐼𝑂𝑁(𝑡𝑒𝑚𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑡𝑖𝑑])

10 for 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 ∶ 𝑡𝑒𝑚𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑡𝑖𝑑]. 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 do

11 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡. 𝑝𝑡. 𝑥 += 𝑡𝑖𝑑 ∗ (𝑓𝑢𝑙𝑙_𝑖𝑚𝑔. 𝑐𝑜𝑙𝑠 / 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

12 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑖]. 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠. 𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡)

13 for 0 to 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 do

14 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑣𝑒𝑐𝑡𝑜𝑟. 𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑡𝑒𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑡𝑖𝑑]. 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠)

15 𝑐𝑜𝑛𝑐𝑎𝑡(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑣𝑒𝑐𝑡𝑜𝑟, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑖]. 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠)

16 𝐹𝐸𝐴𝑇𝑈𝑅𝐸_𝑀𝐴𝑇𝐶𝐻

17 𝐼𝑀𝐴𝐺𝐸_𝑊𝐴𝑅𝑃

18 𝐼𝑀𝐴𝐺𝐸_𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐼𝑂𝑁

19 return 𝐷

C. GPU Accelerations

As outlined in Fig. 3, various stages of the stitching algorithm can be accelerated with a Graphics Processing Unit

if that resource is available. This work utilizes the OpenCV implementations of GPU accelerated functionality. For

example, the feature detection stage of the image stitching workflow can use CUDA supported versions of ORB and

SURF. If there is no GPU access, the implementation will default to CPU usage. The results in Section IV C show a

comparison of performance between computing the image stitching workflow on a CPU against a CPU with GPU

support.

This section expanded on the design of distributing the workload of fusing a set of images across multiple processes

and explored how the shared memory of each node can be used to perform subtasks in parallel. With the algorithm

designs defined, the implementation details are explained in the next sectiom, followed by the presentation of results

for both the shared and distributed memory approaches to image stitching, as well as the outcomes of a hybrid model

that combines both techniques.

V. Experimental Results

The data set used to benchmark the algorithms outlined in Section IV consists of Open Computer Vision (OpenCV)

library’s Mat objects, which represent an n-dimensional numerical multi-channel array. Each test run will fuse 64 4k

images. The metrics used to measure performance will consist of runtime, speedup, cost, and efficiency defined below.

Sections V subsections A, B and C record the impact of the distributed memory design (utilizing MPI), shared memory

design (utilizing OpenMP) and hybrid design (utilizing MPI and OpenMP) on the algorithm’s speed respectively. To

ensure optimal performance, C++ was chosen as the implementation language and the tested hardware platforms are

shown in Table 2 below.

Table 2 Testing hardware configurations.

 First Setup Seconds Setup Third Setup Fourth Setup

CPU Intel i7-8750H Intel i9-13900KF Intel i7-7700K Xeon Gold

GPU GTX 1070 Max-Q RTX 4060Ti GTX 1070 Tesla-v100

OpenCV Ver. OpenCV 4.10.0 OpenCV 4.10.0 OpenCV 4.5.5 OpenCV 4.5.5

RAM 16GB 32GB 64GB 192GB

GPU Memory 8GB 16GB 8GB 16GB

12

It should be noted that the number of available processors is not directly proportional to the decrease in runtime but

also depends on the percentage of the program that can be parallelized as described by Amdahl’s law,

𝑆 =
1

(1−𝑃)+
𝑃

𝑁

 (2)

where 𝑆 is the speedup ratio, N is the number of processor cores, 𝑃 is the proportion of the task that can be parallelized

and (1 − 𝑃) is the proportion of tasks that must be performed sequentially. The four metrics used in the following

analysis are:

1) Serial and Parallel Runtime: The serial and parallel runtime of a program are defined as follows:

1) The serial runtime of a program is the time between the beginning and the end of its execution on a single

processor. This is denoted by 𝑇𝑠.

2) Parallel runtime is the time from the moment the first processor begins its execution to the moment the last

processor ends its execution. This is denoted by 𝑇𝑝.

2) Speedup: The overall speedup is defined as the ratio between the serial runtime to the time taken by the parallel

runtime,

 𝑆 =
𝑇𝑠

𝑇𝑝
 (3)

The speedup of a parallel algorithm measures how much faster an algorithm is than its sequential counterpart.

3) Cost: The cost of processing a program on a parallel system is defined as the product of runtime and the number

of processes 𝑁,

𝐶 = 𝑇𝑝 ∗ 𝑁 (4)

4) Efficiency: The efficiency of a parallel program that uses 𝑁 processes is defined by

𝐸 =
𝑇𝑠

𝑁∗𝑇𝑝
=

𝑆

𝑁
 (5)

Because the goal of this research is to achieve real-time processing of high resolution images at a frame rate of 60

frames per second (fps), the benchmarks shown below are the result of fusing 64 sequential video frames. 64 frames

was chosen to align with the fact that the algorithm outlined in Section IV B is designed to work best with 𝑁 = 2𝑘

processors and 𝐼 = 2 × 𝑁 images. The resulting images shown in Subsections A and C were produced by fusing 64

preselected video frames while the resulting images in Subsection B were produced by fusing 64 sequential frames.

This was chosen because the distance traveled between frames depends on the speed and altitude of the aircraft. In

general, the scene does not change significantly between sequential frames for typical UAV acquired images.

Therefore, in order to showcase the fusion process for a prolonged flight, the preselected frames are presented.

A. Results for Distributed Memory Design

By employing Message Passing Interface with the image stitching workflow, there is a reduction in the runtime of

fusing 64 4k images from approximately 205 seconds to about 27 seconds as shown in Fig. 9a. This equates to a

speedup of 7x as shown in Fig. 9b and was achieved using a setup consisting of an Intel Cascade-Lake CPU paired

with a Nvidia Tesla-v100 GPU (fourth setup in Table 2). It should be noted that SURF was used in producing these

results while the results of the remaining sub-sections utilized ORB. Because with each iteration, half of the compute

nodes go idle, the cost in Fig. 9c increases severely followed by a reduction in efficiency as shown in Fig. 9d. The

result of fusing 64 preselected nonsequential frames is shown in Fig. 10.

13

Fig. 9 Runtime, speedup, cost and efficiency of fusing 64 sequential 4K video frames for increasing MPI node

count.

Fig. 10 Result of fusing 64 preselected video frames.

B. Results for Shared Memory Design

As shown in Fig. 11a, by increasing the number of threads that detect features on a single video frame, there is a

decrease in the computation time of feature detection by more than 10x. These data were measured on a single Intel

i9-12900H CPU and Nvidia RTX 3070Ti GPU (second setup in Table 2). Similar to the distributed memory design,

there is an increase in cost and decrease in efficiency with increasing thread count.

14

Fig. 11 Parallel feature detection runtime, speedup, cost, and efficiency for increasing thread count.

It is interesting to note that, as shown in Fig. 13 in Subsection IV C, while the total computation time of the image

stitching workflow is not greatly decreased with the shared memory design, there is a significant improvement in the

quality of the results. The leftmost image of Fig. 12 shows the result of fusing 64 sequential video frames with a single

thread. The artifacts consisting of black streaks in the first three results are common when the images that are fused

together are too similar. From Fig. 12, moving from left to right, by increasing the thread count during the feature

detection stage of the image stitching workflow, there is a corresponding increase in the overall quality of the results.

Fig. 12 Result of using 1, 4, 8, and 16 OpenMP threads respectively with a single CPU core to fuse 64

sequential 4k video frames.

C. Results for the Hybrid Design

By integrating both the distributed memory and shared memory designs with the image stitching workflow, it is

possible to decrease the computational complexity of the fusion algorithm while also preserving the quality of the

results. Fig. 13a shows the runtime of fusing 64 sequential video frames under the hybrid design for increasing

processor core/thread count. These results were produced using the second setup in Table 2. Note the dip in speedup

after 16 cores are used. This is because the Intel i9-13900KF has 24 cores. A processor with more cores will not show

15

this behavior. Again, there is a significant increase in speedup as shown in Fig. 13b. There is also a corresponding

increase in cost and decrease in efficiency as before. Also shown in Fig. 13 are metrics for the GPU accelerations

outlined in Fig. 3 in tandem with the distributed memory design. There is a 2x reduction in the computation time when

compared to performance on a CPU and a significant reduction in cost when the GPU is enabled. However, if that

particular hardware were unavailable, there is still decrease the computation with the methods outlined above.

Fig. 13 Runtime, speedup, cost and efficiency of the hybrid design as a function of thread/CPU core count.

Figure 14 shows the results of fusing 64 preselected video frames under the hybrid design. These results agree with

those in Fig. 10, which utilized only the distributed memory design.

Fig. 14 Result of fusing 64 video frames under the hybrid design.

16

This section presented and analyzed the results of the distributed memory, shared memory, and hybrid design to

image stitching and compared those results to performance with and without GPU support. It was found that as more

levels of parallelism are incorporated and the workflow is broken into smaller subtasks, there is an decrease in the

time it takes to produce results. It was also found that an increase in thread count of the shared memory approach to

feature detection produces an improvement in the quality of the results. The next section provides some final thoughts

and plans for future work.

VI. Conclusion

 By utilizing parallel computing techniques for distributed and shared memory architecture, the runtime of feature-

based image fusion has been reduced while preserving the integrity of the generated panoramic images. It was found

that the distributed memory design helps reduce redundant calculations, while the shared memory design helps

preserve the quality of the results. Overall, the best performance observed comes from utilizing the distributed memory

approach along with GPU accelerations. The algorithms developed in this work will not only accelerate the image

fusion process on any single-core CPU, multi-core CPU, or cluster of multi-core CPUs, but will also provide stability

in map generation should GPS data become unavailable during UAV flight.

 Future work will involve expanding the shared memory design to include more components of the image stitching

workflow as well as integrating the GPU with the shared memory design. As of now, the shared memory and GPU

accelerations are not designed to run simultaneously. Within the image stitching workflow, plans are in place to

explore further optimizations involving GPU-accelerated tools, as currently, only certain operations within the

workflow utilize a GPU. Plans to design a framework for storing, retrieving, and updating larger maps that exceed the

memory of the hardware are also under consideration. Lastly, a Graphical User Interface (GUI) will be built, allowing

a remote user to view a live video feed from the UAV while observing the panorama being generated in real-time.

References

[1] Debnath, D., Vanegas, F., Sandino, J., Hawary, A. F., and Gonzalez, F., “A Review of UAV Path-Planning Algorithms and

Obstacle Avoidance Methods for Remote Sensing Applications,” Remote Sensing, Vol. 16, No. 21, 2024, p. 4019.

https://doi.org/10.3390/rs16214019

[2] Bashir, M. H., Ahmad, M., Rizvi, D. R., and El-Latif, A. A. A., “Efficient CNN-Based Disaster Events Classification Using

UAV-Aided Images for Emergency Response Application,” Neural Computing and Applications, Vol. 36, No. 18, 2024,

pp. 10599–10612. https://doi.org/10.1007/s00521-024-09610-4

[3] Brown, M., and Lowe, D. G., “Automatic Panoramic Image Stitching Using Invariant Features,” International Journal of

Computer Vision, Vol. 74, No. 1, 2007, pp. 59–73. https://doi.org/10.1007/s11263-006-0002-3

[4] Ramadhan, A. W., Aulia, F., Dewi, N. M. L. A., Winarno, I., and Sukaridhoto, S., “Distributed Aerial Image Stitching on

Multiple Processors Using Message Passing Interface,” JOIV : International Journal on Informatics Visualization, Vol. 8,

No. 1, 2024, pp. 409–416. https://doi.org/10.62527/joiv.8.1.1890

[5] Rafael, C. G., and Richard, E. W., “Digital Image Processing (Fourth Edition),” Pearson Education, 2018.

[6] Abughalieh, K., Bataineh, O., and Alawneh, S., “Acceleration of Image Stitching Using Embedded Graphics Processing

Unit,” presented at the 2018 IEEE International Conference on Electro/Information Technology (EIT), 2018.

https://doi.org/10.1109/EIT.2018.8500187

[7] Wang, G., Zhai, Z., Xu, B., and Cheng, Y., “A Parallel Method for Aerial Image Stitching Using ORB Feature Points,”

presented at the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), 2017.

https://doi.org/10.1109/ICIS.2017.7960096

[8] Du, C., Yuan, J., Dong, J., Li, L., Chen, M., and Li, T., “GPU Based Parallel Optimization for Real Time Panoramic Video

Stitching,” Pattern Recognition Letters, Vol. 133, 2020, pp. 62–69. https://doi.org/10.1016/j.patrec.2019.06.018

[9] Nakov, O., Mihaylova, E., Lazarova, M., and Mladenov, V., “Parallel Image Stitching Based on Multithreaded Processing

on GPU,” presented at the 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC),

2018. https://doi.org/10.1109/ICONIC.2018.8601253

[10] Yeh, S.-H., and Lai, S.-H., “Real-Time Video Stitching,” presented at the 2017 IEEE International Conference on Image

Processing (ICIP), 2017. https://doi.org/10.1109/ICIP.2017.8296528

[11] Huang, X., Tang, R., Zhou, Y., Yin, H., and Yan, C., “DSP-Based Parallel Optimization for Real-Time Video Stitching,”

Journal of Real-Time Image Processing, Vol. 20, No. 2, 2023, p. 28. https://doi.org/10.1007/s11554-023-01275-x

[12] Bang, S., Kim, H., and Kim, H., “UAV-Based Automatic Generation of High-Resolution Panorama at a Construction Site

with a Focus on Preprocessing for Image Stitching,” Automation in Construction, Vol. 84, 2017, pp. 70–80.

https://doi.org/10.1016/j.autcon.2017.08.031

[13] AlAbidy, A., Zaben, A., Abu-Sharkh, O. M. F., and Noman, H. A., “A Survey on AI-Based Detection Methods of GPS

Spoofing Attacks on UAVs,” presented at the 2024 IEEE 12th International Conference on Intelligent Systems (IS), 2024.

https://doi.org/10.1109/IS61756.2024.10705273

[14] “(PDF) Protecting Autonomous UAVs from GPS Spoofing and Jamming: A Comparative Analysis of Detection and

Mitigation Techniques,” ResearchGate, 2024. https://doi.org/10.9734/jerr/2024/v26i101291

17

[15] Lyu, W., Zhou, Z., Chen, L., and Zhou, Y., “A Survey on Image and Video Stitching,” Virtual Reality & Intelligent

Hardware, Vol. 1, No. 1, 2019, pp. 55–83. https://doi.org/10.3724/SP.J.2096-5796.2018.0008

[16] Guo, L., Zhu, H., Liu, Y., Sun, X., and Teng, X., “Aerial Image Stitching Based on Fusion of Geographic Coordinates and

Image Features,” presented at the 2022 IEEE International Conference on Unmanned Systems (ICUS), 2022.

https://doi.org/10.1109/ICUS55513.2022.9986913

[17] Laishram, D., and Manglem Singh, K., “A Watermarking Scheme for Source Authentication, Ownership Identification,

Tamper Detection and Restoration for Color Medical Images,” Multimedia Tools and Applications, Vol. 80, No. 16, 2021,

pp. 23815–23875. https://doi.org/10.1007/s11042-020-10389-4

